Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Sci Total Environ ; 912: 168921, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38040346

RESUMO

A wide range of contaminants of emerging concern (CECs) are known to photodegrade in the surface layers of natural waters and wastewater systems. Computer programs such as GCSolar, ABIWAS, APEX, EXAMS and WASP model the direct photolysis rates and half-lives of CECs, usually as a function of the solar irradiance, water molar light extinction, chemical molar light absorption and reaction quantum yield. These programs have been used extensively for studies in natural water systems in the northern hemisphere. However, their applicability to wastewater treatment systems such as waste stabilisation ponds and/or southern hemisphere conditions is not well studied. Here we present a comparative review of the major software used and their potential applicability to predicting direct photolysis rates and half-lives in wastewater. The newer equivalent monochromatic wavelength, approach, which enables the approximation of polychromatic photodegradation via a monochromatic wavelength is also discussed. Current software appears to be less suitable for modelling photodegradation in wastewater systems in the southern hemisphere than the northern hemisphere as their internal databases are based on data from natural waters in the northern hemisphere. This may be because there have been few attempts to model CEC photolysis in wastewater systems, particularly in the southern hemisphere. This indicates that either new software needs to be developed, or these programs need to be updated with data on wastewater matrices and/or the southern hemisphere. We anticipate this review will promote the adaptation of these programs as tools to further the understanding CEC photodegradation in wastewater treatment plants.

2.
Sci Total Environ ; 912: 169441, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123089

RESUMO

The water industry worldwide experiences numerous sewer blockages each year, partially attributed to the accumulation of fat, oil and grease (FOG). Managing this issue involves various strategies, including the requirement for installation of grease interceptors (GIs) installation. However, the claimed efficacy of commercial GIs of eliminating 99 % of FOG has been questioned for many years because FOG deposit formation occurs despite food service establishments (FSEs) using GIs, therefore detailed understanding of FOG wastewater compositions and its removal by GIs is required. This study provides an insight into the key FOG components such as FOG particle size, metals and fatty acid (FA) profile in GI influent and effluent, and within the GI, at three different FSEs. Analysis of FAs identified substantial proportions of extra-long-chain FAs in the effluents, including arachidic (C20:0), behenic (C22:0), mead (C20:3), lignoceric (C24:0), and nervonic (C24:1) acids. In contrast, the household kitchen released palmitic (C16:0), oleic (C18:1) and linoleic (C18:2) acids. It was further observed that scums effectively remove the larger FOG particles, leaving only 10 % below 75.4 µm. Notably, FSEs which employed automatic dishwashers produced up to 80.4 % of particles ≤45 µm, whereas FSEs and household kitchen which used handwash sinks generated only 36.9 % and 26.3 % of particles ≤45 µm, respectively. This study demonstrated that the commercial GIs do not remove FOG entirely but clearly demonstrated that they discharge high concentrations of FOG with extra-long FFAs which were attributed to the occurrence of microbial activity and hydrolysis of triglycerides within the GI, potentially contributing to FOG deposition.


Assuntos
Gorduras , Serviços de Alimentação , Macrolídeos , Esgotos , Hidrocarbonetos/análise
3.
Anal Methods ; 15(39): 5112-5128, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37791457

RESUMO

The presence of fat, oil and grease can lead to blockages in sewer lines, pumps, and treatment plant operations, thereby creating health risks and environmental hazards. These deposits primarily consist of fatty acids, triglycerides and soap, among other components. These three main components are hydrophobic and insoluble in water. The composition of FOG can vary significantly depending on the source, such as food service establishments, households, or industrial processes. Several analytical methods, such as chromatographic, gravimetric, chemical and spectroscopic analysis, are used to measure different FOG components. AOAC, Gerber and APHA are the most commonly utilized standardized analytical methods for measuring FOG components. The AOAC and Gerber methods, which use gas chromatography, tend to provide more accurate results compared to other methods. This can be attributed to GC's ability to measure individual fatty acids in FOG samples by separating and quantifying each compound based on its unique chemical properties, such as volatility, polarity and molecular weight. Similarly, high-performance liquid chromatography is capable of measuring glycerides by separating and quantifying them based on their polarity and molecular weight. This article delves into the challenge of accurately measuring FOG concentrations and evaluates various FOG measurement technologies. The study also discusses the need for standardized methods for FOG measurement, highlighting the importance of understanding FOG deposits and the performance of grease interceptors.


Assuntos
Gorduras , Águas Residuárias , Gorduras/análise , Gorduras/química , Esgotos/análise , Esgotos/química , Hidrocarbonetos , Ácidos Graxos/análise
4.
Sci Total Environ ; 904: 166761, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37660807

RESUMO

The increasing global demand for fatty products, population growth, and the expansion of food service establishments (FSEs) present significant challenges for the wastewater industry. This is often due to the build-up of fat, oil and grease (FOG) in sewers, which reduces capacity and leads to sanitary sewer overflows. It is crucial to develop economic and sustainable in-sewer FOG management techniques to minimise maintenance costs and service disruptions caused by the removal of FOG deposits from sewers. This study aims to understand the process of FOG deposit formation in both concrete and non-concrete sewers. Compared to fresh cooking oil, disposal of used cooking oil in households and FSE sinks results in the formation of highly adhesive and viscous FOG deposits. This occurs due to hydrolysis during frying, which increases the concentration of fatty acids, particularly palmitic acid, in the used cooking oil. Furthermore, metal ions from food waste, wastewater, and dishwashing detergents contribute to the saponification and aggregation reactions which cause FOG deposition in both concrete and non-concrete sewers. However, the leaching of Ca2+ ions exacerbates FOG deposition in cement-concrete sewers. The article concludes by suggesting future research perspectives and proposes implementation strategies for microbially induced concrete corrosion (MICC) control to manage FOG deposition in sewers. One such strategy involves applying superhydrophobic coating materials with low surface free energy and high surface roughness to the interior surfaces of the sewer. This approach would help repel wastewater carrying FOG deposit components, potentially disrupting the interaction between FOG components, and reducing the adhesion of FOG deposits to sewer surfaces.

5.
Water Res ; 225: 119141, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36182671

RESUMO

Treatment of wastewater with high levels of fat, oil, and grease (FOG), produced by the growing number (annually 2%) of food service establishments (FSEs), is a major concern for water utilities. About 30-40% of sewer blockages are caused primarily by the formation of FOG deposits in sewer pipes, and an annual additional maintenance cost is required for sewer management. To manage FOG deposition, FSEs are required to recover the FOG at the point of generation by installing grease interceptors (GIs) before release to the sewer system. The successful control of FOG deposition is largely dependent on clear understanding of its complex properties, pre-treatment processes, deposition mechanism and public awareness. The objective of this study is to provide a comprehensive understanding of the physicochemical properties of FOG, including particle size distribution and their removal efficiencies by existing GIs. Nowadays, generation of FOG particles of ≤45 µm is increasing because of the increasing use of automatic dishwashers. Current hybrid processes which comprise pre-treatment prior to GI use are ineffective since they are unable to completely remove particle sizes of ≤45 µm. Hence, there is potential for these particles to be released into the sewer system and eventually cause blockages. This critical review discusses the characteristics of effluents, including the particle size distributions generated from automatic dishwashers and handwash sinks. It concludes by providing some case studies and a perspective of the future opportunities to develop a novel GI process integrated with pre-treatment to remove particles of all sizes, including colloidal particles.


Assuntos
Esgotos , Águas Residuárias , Esgotos/química , Gorduras/química , Hidrocarbonetos , Água
6.
Chemosphere ; 285: 131487, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34273703

RESUMO

Six common microalgal species, including freshwater microalgae Scenedesmus abundans, Chlorella vulgaris, Chlamydomonas reinhardtii and Coelastrum microporum, and marine microalgae Nannochloropsis salina and Dunaliella tertiolecta, were tested in batch treatment to identify the most promising species for remediating a municipal wastewater reverse osmosis concentrate (ROC). Selected species were then studied at different ROC salinity levels (5, 10, and 15 g TDS/L) in semi-continuous treatment to evaluate their potential for nutrient remediation, and biogas production through anaerobic digestion. S. abundans, C. vulgaris, and N. salina showed higher potential for growth and nutrient remediation under salinity stress. Further tests revealed that N. salina adapted well to ROC conditions, and S. abundans could grow better and had higher tolerance to the elevated salinity than C. vulgaris. S. abundans and N. salina performed better for removing nutrients and organic matter (11.5-18 mg/L/d TN, 7.1-8.2 mg/L/d TP, and 8.6-12.4 mg/L/d DOC). Increasing salinity led to growth inhibition and N uptake reduction for freshwater species but had no significant effect on TP removal. Biochemical methane potential tests showed the algal biomass produced a significant amount of methane (e.g., up to 422 mL CH4/g VS for N. salina), suggesting the algae generated from the ROC treatment could produce significant amounts of energy through anaerobic digestion without the need for pretreatment. This study showed the environmental and economic potential of the algal system for future applications.


Assuntos
Chlorella vulgaris , Microalgas , Biocombustíveis , Biomassa , Osmose , Salinidade , Águas Residuárias/análise
7.
Chemosphere ; 276: 130028, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33690032

RESUMO

Alginate can be used for entrapment of microalgal cells in gel beads to achieve high-rate treatment of wastewater and can overcome the difficulties of cell separation that would occur in suspended microalgae treatment systems. The potential for alginate beads to disintegrate in the presence of high ion concentrations could limit the use of alginate entrapment for treating municipal wastewater reverse osmosis concentrate (ROC). The combined effect of the pH, alkalinity, and salinity of the ROC that impact the physical stability, chemical characteristics, biomass production, and nutrient removal performance of alginate-entrapped Chlorella vulgaris for treating the ROC was investigated. Water adsorption resulting from the loss of calcium from the alginate matrix was the initiating cause of reduction of the algal bead stability. The combination of alkalinity >400 mg/L and pH ≥9.5 led to a >65% reduction in compressive strength and thus disintegration of beads during ROC treatment. However, alginate beads of C. vulgaris were sufficiently stable and were capable of nutrient remediation (up to 100% TP and 85% TN per treatment cycle of 48 h over a 10-day period) and biomass production (up to 340 mg/L/d) when salinity, pH, and alkalinity levels were <8 g TDS/L, 7-9.5, and <400 mg/L, respectively. Empirical models that were developed and validated could enable the prediction of the performance of the algal beads for various ROC compositions. This study enhances the insight and decision-making regarding the feasibility of the alginate-immobilised microalgal system for treating municipal wastewater ROC streams.


Assuntos
Chlorella vulgaris , Microalgas , Alginatos , Biomassa , Osmose , Águas Residuárias
8.
Sci Total Environ ; 765: 142733, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33572041

RESUMO

Photochemically produced reactive oxygen species in wastewater lagoons upon sunlight exposure are important in the attenuation of emerging contaminants (ECs). The production of reactive radicals in wastewater lagoons depends on both environmental factors and the composition of effluent organic matter (EfOM) in the wastewater. Knowing the steady state concentrations of these reactive species produced in a particular lagoon wastewater is critical to the prediction of the persistence and attenuation of ECs in that sunlit wastewater treatment lagoon. This study quantified the formation of four photochemically produced reactive intermediates (PPRIs): hydroxyl radical, carbonate radical, singlet oxygen, and triplet excited state EfOM in 11 samples collected from a municipal wastewater lagoon over a full year. The temporal distribution of these key PPRIs in the lagoon under investigation was determined in relation to sunlight irradiance, wastewater composition and temperature. Greater sunlight intensity led to greater PPRI production over the year. Increasing wastewater temperature from 12 to 25 °C led to greater production of singlet oxygen, a moderate decrease in hydroxyl radical and increase in triplet excited state EfOM, and minimal impact on carbonate radical production. The optical properties of the lagoon wastewater of Napierian absorption coefficient (A300) and E2:E3 ratio could be used as indicators of the formation of singlet oxygen (Pearson's r = 0.79) and triplet excited EfOM (Pearson's r = 0.76) produced upon solar irradiation. The concentration of carbonate radical formed was strongly correlated to the nitrate level in the wastewater (Pearson's r = 0.85). The findings could be used for modelling the seasonal sunlight-induced photolysis process of ECs during lagoon-based wastewater treatment, with a view to optimising the treatment process, predicting the efficacy of EC removal, and risk assessment of the treated water.

9.
Environ Technol ; 42(10): 1521-1530, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31560609

RESUMO

The use of microalgae for nutrients removal from wastewater has attracted more attention in recent years. More specifically, immobilized systems where algae cells are entrapped in beads in a matrix of a polysaccharide such as alginate have shown a great potential for nutrients removal from wastewater to low levels with reduced retention times and hence smaller footprint. However, a significant operational cost in the up-scaling of alginate-immobilized algae reactors will be the gelling agent alginate. To reduce expenditure of this consumable a proof-of-concept is given for an alginate recycling method using sodium citrate as a dissolving agent. Using algae beads made from virgin and recycled alginate yielded comparable removal rates for both phosphorus and nitrogen compounds from wastewater. At labscale, an alginate recovery of approximately 70% can be achieved which would result in a net operational cost reduction of about 60%.


Assuntos
Microalgas , Eliminação de Resíduos Líquidos , Alginatos , Nitrogênio , Fósforo , Águas Residuárias
10.
Environ Sci Pollut Res Int ; 27(21): 26905-26914, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32382902

RESUMO

Municipal wastewater reverse osmosis concentrate (ROC) poses health and environmental risks on its disposal as it contains nutrients and harmful organic compounds at elevated concentrations. This study compared a freshwater microalga Chlorella vulgaris and a marine microalga Nannochloropsis salina in suspended and alginate-immobilised cultures for batch and semi-continuous treatment of the ROC. The immobilised algae gave comparable nutrient removal rates to the suspended cells, demonstrating immobilisation had no apparent negative impact on the photosynthetic activity of microalgae. Semi-continuous algal treatment illustrated that the microalgae could remove significant amounts of nutrients (> 50% and > 80% for TN and TP, respectively), predominantly through algal uptake (> 90%), within a short period (48 h) and generate 335-360 mg DCW L-1 d-1 of algal biomass. The treatment also removed a significant amount of organic matter (12.7-13.3 mg DOC L-1 d-1), primarily (> 65%) through the biotic pathway.


Assuntos
Chlorella vulgaris , Microalgas , Biomassa , Filtração , Nitrogênio/análise , Nutrientes , Osmose , Eliminação de Resíduos Líquidos , Águas Residuárias
11.
Sci Total Environ ; 721: 137676, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32172107

RESUMO

The occurrence and fate of emerging contaminants (ECs) in surface water bodies is of increasing interest to water quality managers and environmental regulators throughout the world. Wastewater treatment plants are a major source of ECs in many aquatic environments. A modified Quantitative Water Air Sediment Interaction (QWASI) fugacity model was developed for a municipal wastewater lagoon system to study the behaviour of six representative ECs. As the wastewater lagoons were exposed to extensive periods of sunlight, the original model was modified by the addition of photolytic degradation as a removal mechanism. Laboratory studies were conducted over different seasons of a year to obtain the rate constants for the key processes of sunlight photodegradation, water and sediment transformation, as well as sediment sorption coefficients for the target ECs in the system to serve as model inputs. The model predicted the pathways for the different ECs and that at least 65% of the concentration of the ECs remained in the outflow of the first lagoon of the lagoon system after treatment. The greatest removal was predicted for sulfamethoxazole (35%) and the least for carbamazepine (5%). Multi-segment theory was applied to the single lagoon model and the predictions for the sequential six lagoon system were validated through field sampling. Sensitivity analysis revealed that the mass transfer coefficient between the water and sediment phases was the most influential parameter, with the four key process rate constants having various impacts depending on the EC. These results suggest that the modified QWASI model could be used to more accurately represent the fate and transport of ECs in this unique wastewater lagoon/stabilisation pond treatment system. Furthermore, it can be adapted to model a wide range of ECs in other wastewater treatment lagoon systems and thus assist with process optimisation and risk assessment of the treated water.

12.
Sci Total Environ ; 699: 134249, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31522051

RESUMO

The application of multimedia fugacity models is useful to facilitate understanding of the behaviour of emerging contaminants during wastewater treatment, as well as after their release to the environment. In this paper, twenty-two fugacity modelling applications (reported over 1995-2019) describing the distribution of organic micropollutants in wastewater treatment plants and surface water bodies were analysed in terms of model application and modelling strategy. Disparities and similarities in strategies including selection of micropollutants, data sources for internal and external model inputs, sensitivity and uncertainty analysis, as well as model validation were discussed. This review confirmed that fugacity modelling is very applicable for providing qualitative predictions of the fate and removal of organic micropollutants in the various aqueous systems. However, it was also noted that there are issues related to the uncertainties and sensitivities of fugacity models such as the sources of model inputs and selection of default settings. The issues associated with the uncertainties in the investigated fugacity models are pointed out. Recommendations are given regarding the selection of the sources of model inputs, sensitivity analysis strategies and model validation methods. This review presents the challenges and opportunities for improving multimedia fugacity models, and so paves the way for future research in this field.

13.
Chemosphere ; 240: 124925, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31563715

RESUMO

A study was conducted to understand the impact of reverse osmosis concentrate (ROC) characteristics on the efficacy of biological activated carbon (BAC) based treatments for removing organics and nutrients from two ROC streams (ROCa derived from municipal waste input with high salinity, and ROCb derived from domestic waste plus industrial trade waste with markedly lower salinity). Fluorescence excitation and emission matrix spectra and molecular weight analysis demonstrated that ROCa and ROCb had a significantly different composition of organic compounds due to the petrochemical processing and abattoir waste compounds in ROCb. Although the sequence of coagulation, UV/H2O2 and BAC gave the highest organic removal from the two ROCs (67% DOC for ROCa and 62% for ROCb), UV/H2O2 followed by BAC achieved satisfactory removal (>55%) for both ROC types. Sequential treatment involving coagulation gave better phosphorus removal (>90%) than any single treatment (<65%). Total nitrogen (TN) removal was fairly low (<50%) for all the treatment options and the salinity level had insignificant impact on nitrogen removal. Analysis of bacterial communities suggested that higher phosphorus removal and lower total nitrogen and nitrate removal from ROCb than ROCa was related to the presence of various denitrifying or phosphorus accumulating bacteria in the BAC.


Assuntos
Carvão Vegetal/química , Compostos Orgânicos/análise , Osmose , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Desnitrificação , Filtração/métodos , Peróxido de Hidrogênio/química , Nitrogênio/análise , Fósforo , Salinidade , Águas Residuárias/química
14.
J Environ Manage ; 254: 109780, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31739092

RESUMO

Minimising the usage of potable water in industrial and cleaning processes is essential to conserve fresh water. Recycling treated wastewater will help to do so. However, high quality treated wastewater is required for reuse and recycling. This study evaluated the performance of an enhanced membrane bioreactor (eMBR) in treating car wash wastewater for the purpose of reuse. The eMBR consisted of an anaerobic tank, an anoxic tank, an aerobic membrane bioreactor (AMBR) and a UV disinfection unit. The effects of hydraulic retention time of the eMBR on the treated water quality parameters and operating parameters were evaluated. The eMBR produced high quality recyclable water (0.5-10.2 mg/L of COD, 0.18-0.83 NTU of turbidity, 0 org. of E. Coli/100 mL) meeting Class A recycle water standards. Decrease in the mixed liquor suspended solids concentration in the AMBR (from 294 to 117 mg/L) reduced the fouling of the membrane which increased the permeate flux (from 5.9 to 6.7 L/m2h). This is unique to the eMBR system used in this study. However, when the flux exceeded the critical flux, the trans-membrane pressure increased significantly.


Assuntos
Águas Residuárias , Purificação da Água , Reatores Biológicos , Escherichia coli , Membranas Artificiais , Eliminação de Resíduos Líquidos
15.
Sci Total Environ ; 662: 923-939, 2019 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-30795480

RESUMO

Ultraviolet (UV) irradiation has proven an effective tool for inactivating microorganisms in water. There is, however, a need to look at disinfection from a different perspective because microbial inactivation alone may not be sufficient to ensure the microbiological safety of the treated water since pathogenic genes may still be present, even after disinfection. Antibiotic resistance genes (ARGs) are of a particular concern since they enable microorganisms to become resistant to antibiotics. UV irradiation has been widely used for disinfection and more recently for destroying ARGs. While UV lamps remain the principal technology to achieve this objective, UV light emitting diodes (UV-LEDs) are novel sources of UV irradiation and have increasingly been reported in lab-scale investigations as a potential alternative. This review discusses the current state of the applications of UV technology for controlling antibiotic resistance during water and wastewater treatment. Since UV-LEDs possess several attractive advantages over conventional UV lamps, the impact of UV-LED characteristics (single vs combined wavelengths, and operational parameters such as periodic or pulsed and continuous irradiation, pulse repetition frequencies, duty cycle), type of organism, and fluence response, are critically reviewed with a view to highlighting the research needs for addressing future disinfection challenges. The energy efficiency of the reported UV processes is also evaluated with a focus on relating the findings to disinfection efficacy. The greater experience with UV lamps could be useful for investigating UV-LEDs for similar applications (i.e., antibiotic resistance control), and hence identification of future research directions.


Assuntos
Desinfecção/métodos , Resistência Microbiana a Medicamentos/efeitos da radiação , Viabilidade Microbiana/efeitos da radiação , Raios Ultravioleta , Águas Residuárias/microbiologia , Purificação da Água/métodos , Escherichia coli/efeitos da radiação , Águas Residuárias/química
16.
J Environ Manage ; 213: 168-179, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29494933

RESUMO

Microfiltration membranes having different blends of graphene-oxide (GO) (0-1 wt%) and Polysulfone (PSf) (15-20 wt%) were prepared using the classical non-solvent induced phase inversion process. The prepared membranes were characterised for their structural morphology, surface properties, mechanical strength, porosity and pure water flux. Based on the initial characterisation results, four membranes (15 wt% PSf, 15 wt% PSf + 0.25 wt% GO, 15 wt% PSf + 1 wt% GO and 20 wt% PSf + 1 wt% GO) were chosen for critical flux study, that was conducted using flux-step method in a lab scale MBR system. In order to study the application potential of GO blended membranes, the critical flux of each membrane was evaluated in two operational modes i.e., continuous and intermittent modes with backwash. The membranes with maximal GO concentration (15 wt% PSf + 1 wt% GO and 20 wt% PSf + 1 wt% GO) showed higher critical flux (16.5, 12.8 L/m2h and 19, 15 L/m2h for continuous and intermittent mode, respectively). It was observed that the operational modes did not have a significant effect on the critical flux of the membranes with low GO concentration (15 wt% PSf and 15 wt% PSf + 0.25 wt% GO), indicating a minimal of 1 wt% GO was required for an observable effect that favoured intermittent mode of operation. Through these results, ideal operating condition was arrived (i.e., flux maintained at 6.4 L/m2h operated under intermittent mode) and the membranes 15 wt% PSf and 15 wt% PSf + 1 wt% GO were studied for their long-term operation. The positive effect of GO on filtration time, cleaning frequency and against fouling was demonstrated through long term TMP profile of the membranes, indicating the suitability of GO blended membrane for real time wastewater treatment.


Assuntos
Grafite , Membranas Artificiais , Purificação da Água , Óxidos , Polímeros , Sulfonas
17.
Membranes (Basel) ; 8(1)2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29389873

RESUMO

The influence of the interaction between aquatic humic substances and the algal organic matter (AOM) derived from Microcystis aeruginosa on the fouling of a ceramic microfiltration (MF) membrane was studied. AOM alone resulted in a significantly greater flux decline compared with Suwannee River humic acid (HA), and fulvic acid (FA). The mixture of AOM with HA and FA exhibited a similar flux pattern as the AOM alone in the single-cycle filtration tests, indicating the flux decline may be predominantly controlled by the AOM in the early filtration cycles. The mixtures resulted in a marked increase in irreversible fouling resistance compared with all individual feed solutions. An increase in zeta potential was observed for the mixtures (becoming more negatively charged), which was in accordance with the increased reversible fouling resistance resulting from enhanced electrostatic repulsion between the organic compounds and the negatively-charged ceramic membrane. Dynamic light scattering (DLS) and size exclusion chromatography analyses showed an apparent increase in molecular size for the AOM-humics mixtures, and some UV-absorbing molecules in the humics appeared to participate in the formation of larger aggregates with the AOM, which led to greater extent of pore plugging and hence resulted in higher irreversible fouling resistance.

18.
Environ Sci Pollut Res Int ; 25(9): 8654-8668, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29322389

RESUMO

Reusing treated effluents in industries is a great option to conserve freshwater resources. For example, car wash centres all over Australia are estimated to use 17.5 billion litres of water and discharge it as wastewater and spend $75 million a year for both purchasing fresh water and for treating and/or discharging the wastewater. Therefore, it is important to develop simple but reliable systems that can help to treat and reuse car wash wastewater. Significant savings could also be associated with the implementation of such systems. This study evaluates the performance of granular and membrane filtration systems with coagulation/flocculation and sedimentation in treating car wash wastewater for the purpose of reuse. Overall, 99.9% of turbidity, 100% of suspended solids and 96% of COD were removed from the car wash wastewater after treating by coagulation, flocculation, sedimentation, sand filtration, ceramic ultrafiltration and reverse osmosis and the treated water meets the standards required for class A recycled water in Australia and standards imposed in Belgium and China. The treated water can be reused. However, optimisation is required to reduce the sludge produced by this system.


Assuntos
Cerâmica/química , Membranas Artificiais , Reciclagem/métodos , Ultrafiltração/métodos , Águas Residuárias/análise , Purificação da Água/métodos , Austrália , Floculação , Indústrias , Osmose , Esgotos/química
19.
Environ Technol ; 39(17): 2243-2250, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28689477

RESUMO

The hydrophilic (HPI) fraction of effluent organic matter, which has protein and carbohydrate contents, has a high propensity to foul low-pressure membranes. Biological activated carbon (BAC) filtration was examined as a pre-treatment for reducing the fouling of a microfiltration (MF) membrane (0.1 µm PVDF) by the HPI organic fraction extracted from a biologically treated secondary effluent (BTSE). Although the BAC removed less dissolved organic carbon, carbohydrate and protein from the HPI fraction than the granular activated carbon treatment which was used for comparison, it led to better improvement in permeate flux. This was shown to be due to the removal/breakdown of the HPI fraction resulting in less deposition of these organics on the membrane, many components of which are high molecular weight biopolymers (such as protein and carbohydrate molecules) through biodegradation and adsorption of those molecules on the biofilm and activated carbon. This study established the potential of BAC pre-treatment for reducing the HPI fouling of the membrane and thus improving the performance for the MF of BTSE for water reclamation.


Assuntos
Incrustação Biológica , Carvão Vegetal , Purificação da Água , Adsorção , Carbono , Filtração , Membranas Artificiais , Compostos Orgânicos
20.
Chemosphere ; 185: 297-308, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28704661

RESUMO

The photodegradation of seven micropollutants commonly found in municipal wastewater, namely caffeine, carbamazepine, diuron, simazine, sulfamethoxazole, triclosan and 2,4-D, was investigated in pure water and secondary effluent to understand the direct and indirect photolysis of these compounds under natural sunlight irradiation. Sulfamethoxazole and triclosan were readily photodegraded with half-lives of 5.8 and 1.8 h, respectively, whilst the others were relatively resistant towards sunlight irradiation. Enhanced degradation was observed in secondary effluent compared with in the pure water matrix for all compounds, except for triclosan. It was confirmed that hydroxyl radicals played an important role in the photodegradation of the micropollutants while singlet oxygen may also play a role. The contribution of hydroxyl radical to the overall degradation of the five compounds that were resistant to direct sunlight accounted for 32%-70%. The impact of humic acid and nitrate, two known photosensitisers and wastewater components, on the photodegradation of the seven micropollutants in pure water was investigated under simulated solar radiation. The presence of nitrate promoted the photochemical loss of all seven micropollutants, however, humic acid caused promotion or inhibition, depending on the characteristics of the micropollutant. Humic acid enhanced the photolytic degradation of caffeine, sulfamethoxazole and diuron, while it hindered the photodegradation of the other four compounds by absorbing the available irradiation energy and/or reforming the parent compound. Furthermore, it was shown that there was only a small increase (up to 15%) in photodegradation of the compounds at 25 °C compared with that at 10 °C in the simulated system.


Assuntos
Fotólise/efeitos da radiação , Luz Solar , Águas Residuárias/química , Poluentes Químicos da Água/efeitos da radiação , Substâncias Húmicas , Radical Hidroxila/farmacologia , Nitratos/química , Sulfametoxazol/efeitos da radiação , Triclosan/efeitos da radiação , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...